CATALOG DOCUMENTATION National Surface Water Survey: Lake Chemistry Survey WLSDS4 (Western Lake Survey-Phase I)

TABLE OF CONTENTS

- DATA SET IDENTIFICATION 1.
- INVESTIGATOR INFORMATION 2.
- DATA SET ABSTRACT 3.
- OBJECTIVES AND INTRODUCTION 4.
- 5. DATA ACQUISITION AND PROCESSING METHODS
- 6. DATA MANIPULATIONS
- 7. DATA DESCRIPTION
- 8. GEOGRAPHIC AND SPATIAL INFORMATION
- 9. QUALITY CONTROL / QUALITY ASSURANCE
- 10. DATA ACCESS
- 11. REFERENCES
- 12. TABLE OF ACRONYMS
 13. PERSONNEL INFORMATION
- 1. DATA SET IDENTIFICATION
- 1.1 Title of Catalog Document $WLSDS4_M$
- 1.2 Authors of the Catalog Entry U.S. EPA NHEERL Western Ecology Division Corvallis, OR
- 1.3 Catalog Revision Date May 1998
- 1.4 Data Set Name WLSDS4
- 1.5 Task Group National Acid Precipitation Assessment Program (NAPAP) -Aquatic Effects Research Program
- 1.6 Data Set Identification Code 157
- 1.7 Version 001
- 1.8 Requested Acknowledgment

This research was funded as apart of the National Acid Precipitation Assessment Program (NAPAP) by the U.S. Environmental Protection Agency (EPA). If you publish these data or use them for analyses in publications, EPA requires a standard statement for work it has supported:

"Although the data described in this article have been funded wholly or in part by the U.S. Environmental Protection Agency, it has not been subjected to Agency review, and therefore does not necessarily reflect the views of the Agency and no official endorsement of the conclusions should be inferred."

- INVESTIGATOR INFORMATION
- 2.1 Principal Investigator Dixon Landers U.S. Environmental Protection Agency NHEERL Western Ecology Division 200 S.W. 35th Street Corvallis, OR 97333

2.2 Investigation Participant - Sample Collection John Baker, Coordinator

DATA SET ABSTRACT

3.1 Abstract of the Data Set

The Western Lake Survey-Phase I (WLS-I), conducted in the fall of 1985, was the second part of a U.S. Environmental Protection Agency field sampling effort known as the National Surface Water Survey. The WLS-I followed the Eastern Lake Survey-Phase I, which was conducted in the fall of 1984 and included the northeastern, southeastern, and upper midwestern regions of the United States. Both surveys were designed to quantify synoptically the lake chemistry in and area of the United States where the majority of lakes were expected to exhibit low alkalinity. These surveys were conducted as part of the National Acid Precipitation Assessment Program.

3.2 Keywords for the Data Set Aluminum, alkalinity, acid neutralizing capacity, calcium, dissolved inorganic carbon, dissolved organic carbon, chloride, color, specific conductance, iron, potassium, magnesium, manganese, ammonium, sodium, sulfate, nitrate, pH, total phosphorus, silica, turbidity, water chemistry

4. OBJECTIVES AND INTRODUCTION

4.1 Program Objective

The WLS-I had three primary objectives. (1) To determine the percentage (by number and area) and location of lakes that are acidic in potentially sensitive regions of the western United States, (2) to determine the percentage (by number and area) and location of lakes that have low acid neutralizing capacity in potentially sensitive regions of the western United States, and (3) to determine the chemical characteristics of lake populations in potentially sensitive regions of the western United States and provide the database for selecting lakes for further study.

- 4.2 Data Set Objective
- This data set is part of the National Surface Water Survey (NSWS) and the National Acid Precipitation Assessment Program (NAPAP). The data set contributes to the quantification of the extent, location , and characteristics of sensitive and acidic lakes and streams in the western United States sampled during the fall season.
- 4.3 Data Set Background Discussion Efforts to assess the impact of acid deposition on aquatic resources have previously been limited to single-factor indices. Acidification of surface waters, however, depends on the acid neutralizing capacity (ANC) generated both within the lake and its watershed. Hence, the response of an aquatic ecosystem to acidic deposition is a composite of many factors. Water chemistry in lakes is analyzed to understand the chemical habitat within which biota must exist so that we can understand the biological potential of the system.
- 4.4 Summary of Data Set Parameters Water chemistry parameters are reported for one sample taken at the deepest part of the lake. These include: aluminum, alkalinity, acid neutralizing capacity, calcium, carbonate, color, specific conductance, dissolved inorganic carbon, dissolved organic carbon, bicarbonate, potassium, magnesium, ammonium, sodium, nitrate, total nitrogen, pH, total phosphorus, silica, total suspended solids, and turbidity. In addition to chemical characteristics of lakes, data were collected on lake characteristics, e.g. location, elevation, depth, area, etc.

- 5. DATA ACQUISITION AND PROCESSING METHODS
- 5.1 Data Acquisition
- 5.1.1 Sampling Objective To obtain a single grab sample of lake water for the purposes of chemical analysis during the fall season, just after turnover, from the center and deepest part of the lake.
- 5.1.2 Sample Collection Methods Summary A 6.2-L Van Dorn acrylic plastic sample bottle was filled from a depth of 1.5 m. Two 60-ml syringes and one 4-L polyethylene Cubitainer were filled from the Van Dorn bottle.
- 5.1.3 Sampling Start Date September 10, 1985
- 5.1.4 Sampling End Date November 4, 1985
- 5.1.5 Platform Helicopter
- 5.1.6 Sampling Gear A 6.2-L Van Dorn acrylic plastic sample bottle was filled from a depth of 1.5 m from the center of the lake. If site depth was (3.0 m and a clean (free from sediment, plants or other large particulate matter) sample could not be obtained at 1.5 m, a sample was collected at 0.5 m.
- 5.1.7 Manufacturer of Instruments NA
- 5.1.8 Key Variables NA
- 5.1.9 Sampling Method Calibration
- 5.1.10 Sample Collection Quality Control Landers, D.H., J.M. Eilers, D.F. Brakke, W.S. Overton, P.E. Kellar, M.E. Silverstein, R.D. Schonbrod, R.E. Crowe, R.A. Linthurst, J.M. Omernik, S.A. Teague, and E.P. Meier. Characteristics of Lakes in the Western United States. Volume I. Population Descriptions and Physico-Chemical Relationships. EPA/600/3-86/054a, U.S. Environmental Protection Agency, Washington, DC, 1987, 176 pp.
- 5.1.11 Sample Collection Method Reference See Landers et al. (1987).
- 5.1.12 Sample Collection Method Deviations NA
- 5.2 Data Preparation and Sample Processing
- 5.2.1 Sample Processing Objective See Landers et al. (1987).
- 5.2.2 Sample Processing Methods Summary See Landers et al. (1987).
- 5.2.3 Sample Processing Method Calibration See Landers et al. (1987).

- 5.2.4 Sample Processing Quality Control See Landers et al. (1987).
- 5.2.5 Sample Processing Method Reference See Landers et al. (1987).
- 6. DATA MANIPULATIONS
- $6.1\,\,$ Name of New or Modified Values None.
- 6.2 Data Manipulation Description See Landers et al. (1987).
- 7. DATA DESCRIPTION
- 7.1 Description of Parameters

7.1 Description of Parameters, continued

#	Parameter SAS Name	Type	Len	Parameter Label
134	DICE11	Num	8	EQUILIBRATED DIC, ANALYTICAL LAB (MG/L)
	DICE11F		12	FLAG FOR ***DICE11
	DICI11	Num	8	INITIAL DIC, ANALYTICAL LAB (MG/L)
	DICI11F DICVAL	Char Num	12 8	FLAG FOR ***DICI11 DIC, FIELD LAB (MG/L)
	DICVALF	Char	12	FLAG FOR ***DICVAL
	DISM	Num	8	DISTANCE FROM COAST (KM)
	DOC11	Num	8	DOC, ANALYTICAL LAB (MG/L)
	DOC11F	Char	12	FLAG FOR ***DOC11
	DP_60 DP_B	Num Num	8 8	DEPTH AT 0.6*SITE DEPTH (M) DEPTH AT BOTTOM-1.5 M (M)
	DP TOP	Num	8	DEPTH AT SURFACE (1.5 M) (M)
	ELEV	Num	8	LAKE ELEVATION (M)
144	FACE	Char	1	GEOMORPHIC SLOPE (E/W)
	FE11	Num	8	IRON (UG/L)
105	FE11F	Char	12	FLAG FOR ***FE11
54 116	FOREST FTL11	Char Num	30 8	FOREST-NF PAR-NP NATREC-NRA FLUORIDE (MG/L)
	FTL11F	Char	12	FLAG FOR ***FTL11
	FTL16	Num	8	FLUORIDE (UEQ/L)
	GMU	Char	6	GEOMORPHIC UNIT
	H16	Num	8	HYDRONIUM FROM PHAC (UEQ/L)
	H16F HC0316	Char	12 8	FLAG FOR ***H16 BICARBONATE ALKALINITY (UEQ/L)
	HC0316F	Num Char	12	FLAG FOR ***HCO316
3	HELGR	Char	1	H/HELICOPTER, G/GROUND TEAM
154	HYDROTYP	Char	9	DRAINAGE, SEEPAGE, CLOSED, RESERVOIR
	IN_OUT		6	PRESENCE/ABSENCE OF INLETS/OUTLETS
98	K11	Num	8	POTASSIUM (MG/L)
99 87	K11F K16	Char Num	12 8	FLAG FOR ***K11 POTASSIUM (UEQ/L)
	LABNAM	Char	30	LABORATORY FOR ANALYSIS
	LAKENAME	Char	30	LAKE NAME
1	LAKE_ID	Char	10	LAKE IDENTIFICATION CODE
	LAKE_SIZ	Num	8	LAKE SURFACE AREA (HA)
65 48	LAKE_VOL	Num	10	CALCULATED LAKE VOLUME (10**6 CU M) LATITUDE
4	LAT LATINS	Char Char	10 10	LORAN LATITUDE (DDMM.DM)
	LAT DD	Num	6	LATITUDE (DECIMAL DEGREES)
5	LNGĪNS	Char	10	LORAN LONGITUDE (DDDMM.DM)
49	LONG	Char	11	LONGITUDE
42 46	LONG_DD	Num	5	LONGITUDE (DECIMAL DEGREES)
46 157	MAP_BIG MAP_MED	Char Char	25 35	MAP NAME, 1:250,000 SCALE MAP NAME, 1:100,000 SCALE
47	MAP SML	Char	40	MAP NAME, 15 OR 7.5 QUAD
96	$MG1\overline{1}$	Num	8	MAGNESIUM (MG/L)
97	MG11F	Char	12	FLAG FOR ***MG11
85	MG16	Num	8	MAGNESIUM (UEQ/L)
	MN11 MN11F	Num Char	8 12	MANGANESE (UG/L) FLAG FOR ***MN11
	NA11	Num	8	SODIUM (MG/L)
	NA11F	Char	12	FLAG FOR ***NA11
88	NA16	Num	8	SODIUM (UEQ/L)
2	NEWSR	Char	10	NEW SUBREGION CODE AS OF 2/25/88
	NH411 NH411F	Num Char	8 12	AMMONIUM (MG/L) FLAG FOR ***NH411
91	NH411F NH416	Num	8	AMMONIUM (UEQ/L)
	N0311	Num	8	NITRATE (MG/L)
113	N0311F	Char	12	FLAG FOR ***N0311

7.1 Description of Parameters, continued

#	Parameter SAS Name		Len	Format	Parameter Label
9.6	NO216	Num	0		NITRATE (HEO/I)
86 55	N0316 NUM IO	Num Char	8 5		NITRATE (UEQ/L) NUMBER OF INLETS/OUTLETS (MAP)
77	ORGION	Num	8		ORGANIC ANION (UEQ/L)
73	ORGIONF	Char	12		FLAG FOR ***ORGION
	PHAC11	Num	8		PH, ACIDITY INITIAL
	PHAC11F	Char			FLAG FOR ***PHAC11
	PHAL11 PHAL11F	Num Char	8 12		PH, ALKALINITY INITIAL FLAG FOR ***PHAL11
123	PHEQ11	Num	8		PH, AIR EQUILIBRATED
123	PHEQ11F	Char	12		FLAG FOR ***PHEQ11
61	PHSTVL	Num	8		PH, FIELD VALUE
	PHSTVLF	Char	12		FLAG FOR ***PHSTVL
28	PH_60	Num Char	8 12		PH AT 0.60*SITE DEPTH
	PH_60F PH B	Num	12 8		FLAG FOR PH_60*** PH AT BOTTOM-1.5M
33	PH BF	Char	12		FLAG FOR PH B***
21	PH TOP	Num	8		PH AT SURFACE (1.5M)
22	PH_TOPF	Char			FLAG FOR ***PH_TOP
	PRECIP	Num	8		ANNUAL PRECIPITATION (M/YR)
	PTL11 PTL11F	Num Char	8 12		TOTAL PHOSPHORUS (UG/L) FLAG FOR ***PTL11
43	REGION		1		NSWS REGION
	REG_SPC	Char	12		/REG/SPC/LTM
146	RT _	Num	8		RESIDENCE TIME (YR)
67	RUNIN	Num	8		SURFACE WATER RUNOFF (INCHES)
	SAMCOD	Char	9		SAMPLE CODE
	SAM_ID SAM_IDF	Char Char	6 12		SAMPLE ID FLAG FOR ***SAM_ID
	SECDIS	Num	8		SECCHI DISAPPEARANCE DEPTH (M)
	SECMEAN	Num	8		SECCHI MEAN DEPTH (M)
	SECREA	Num	8		SECCHI REAPPEARANCE DEPTH (M)
	SI0211	Num	8		SILICA (MG/L)
9	SIO211F SITDPM	Char Num	12 8		FLAG FOR ***SIO211 SITE DEPTH (M)
	S0411	Num	8		SULFATE (MG/L)
	S0411F	Char	12		FLAG FOR ***S0411
	S0416	Num	8		SULFATE (UEQ/L)
	SOBC	Num	8		SUM OF BASE CATIONS (UEQ/L)
72 37	SOBCF ST	Char Char	12 2		FLAG FOR ***SOBC STATE (TWO-LETTER ABBREVIATION)
	STA_ID	Char	6		STATION ID
	STRAT	Char	6		STRATIFICATON TYPE (MIXED, WEAK, STRONG)
50	STRATA	Char	3		NSWS STRATA
	SUBREG	Char	7		REGION + SUB_RGN
44	SUB_RGN	Char	1	ттмг	NSWS SUBREGION
7 24	TIMSMP TMPDF1	Num Num	8	TIME	TIME SAMPLED (HH:MM), FORM 1 TEMP DIFFERENCE TOP-BOTTOM (DEG C)
29	TMPDF2	Num	8		TEMP DIFFERENCE TOP-0.6*DEPTH (DEG C)
16	TMPTOP	Num	8		TEMPERATURE AT SURFACE (1.5M)
26	TMP_60	Num	8		TEMPERATURE AT 0.6*SITE DEPTH (DEG C)
17	TMP_B	Num	8		TEMPERATURE AT BOTTOM-1.5 M (DEG C)
63 148	TURVAL TURVALF	Num Char	8 12		TURBIDITY, FIELD LAB (NTU) FLAG FOR ***TURVAL
52	USFS	Char	1		FOREST SERVICE REGION (APPROX)
66	WALA	Num	8		WATERSHED AREA / LAKE AREA
	WEIGHT1	Num	8		POPULATION EXTRAPOLATION FACTOR
53	WILDNA	Char	30		USFS WILDERNESS NAME
38	WSHED	Num	8		WATERSHED AREA (HA)

7.1 Description of Parameters, continued

#	Parameter SAS Name		Len	Format	Parameter Label
	WS_DIS WS_OTH	Char Char	8 25		D)WELL F)IRE L)OG M)INE R)OAD S)TOCK OTHER DISTURBANCE

7.1.6 Precision to which values are reported

7.1.7 Minimum Value in Data Set

```
Name
        Min
ACC011
        -270.3
        -17
AIRTMP
ALEX11
         0
ALKA11
         -24
ALKANEW -24
ALTIM
         20
ALTL11
         0.7
ANCAT
         0.7826
ANDEF
         -337.1
ANSUM
         14.62
BNSTAR
         150
         0.0865
CA11
CA16
         4.316
CATSUM
         18.38
CL11
         0.023
CL16
         0.649
C0316
         0
COLVAL
         0
         2.16559467
CONCAL
COND11
        1.6
CONTOP
        - 2
CON 60
         -3
CON_B
DATSMP
        9384
DICE11
         0.143
DICI11
         0.307
DICVAL
         0.266
DISM
         1
         0.06
D0C11
DP 60
         3.6
DP^{-}B
         1.5
DP TOP
         1.5
ELEV
         10.673985971
FE11
         0
FTL11
        0
FTL16
         0
H16
         0
HC0316
         2.63
         0.025
K11
         0.639
K16
LAKE_SIZ 1
LAKE_VOL 0.006
LAT DD
         36.092193604
LONG DD
        -105.06243896
MG11
         0.022
MG16
         1.81
MN11
         0
NA11
         0.023
NA16
         1.001
NH411
```

7.1.7 Minimum Value in Data Set, continued

Name	Min
NH416	0
N0311	0
N0316	0
ORGION	0.5775886981
PHAC11	4.55
PHAL11	4.6
PHEQ11	4.65
PHSTVL	4.79
PH_60	5.95
PH_B	4.5
PH_TOP	4.48
PRECIP	0.2032
PTL11	0
RT	0.0021694615
RUNIN	0.2
SECDIS SECMEAN	0.3 0.25
SECREA	0.25
SIO211	0.035
SITDPM	0.033
S0411	0.011
S0416	0.229
SOBC	17.39825
TIMSMP	23040
TMPDF1	-20.6
TMPDF2	0
TMPT0P	0.3
TMP_60	3.6
TMP_B	0.3
TURVAL	0
WALA	1.27
WEIGHT1	3.261
WSHED	5.18

7.1.7 Maximum Value in Data Set

```
Name
        Max
-----
ACC011
        380.8
AIRTMP
        23
ALEX11
        658.95
ALKA11
        4948.6
ALKANEW 3795.2
ALTIM
        12800
ALTL11
        1119
ANCAT
        2.1476
ANDEF
        736.36
        6967.79
ANSUM
BNSTAR
        2317
        95.302
CA11
CA16
        4755.57
CATSUM
        6696.22
CL11
        72.732
CL16
         2051.77
C0316
        311.12
COLVAL
        110
CONCAL
        834.43326377
COND11
        676
CONTOP
         667
CON_60
        225
```

7.1.7 Maximum Value in Data Set, continued

Name	Max
CON_B	668
DATSMP	9439
DICE11	50.22
DICI11 DICVAL	61.83 86.72
DICVAL	149
DOC11	16.72
DP 60	42.2
DP_B	53.4
DP_TOP ELEV	1.5 3912.7782861
LLLV	971
FTL11	3.45
FTL16	181.608
H16	28.18
HC0316	3732.715
K11 K16	19.65 502.45
LAKE_SIZ	
LAKE_VOL	919.703
LAKE_VOL LAT_DD	
	-123.78466797
MG11 MG16	17.884 1471.138
MN11	212
NA16	5415.75
NH416	14.608
N0311 N0316	2.669 43.051
ORGION	167.01513605
PHAC11	167.01513605 9.565
PHAL11	9.605
PHEQ11 PHSTVL	9.05 9.815
PH_60	7.77
PH_B	9.69
PH TOP	10.52
PRECIP	3.2512
PTL11 RT	188.1 18.688546384
RUNIN	120
SECDIS	28.5
SECMEAN	27.75
SECREA	27
SIO211 SITDPM	114.05 109.7
S0411	139.7245
S0416	2909.064
SOBC	6682.93721
TIMSMP	67800
TMPDF1 TMPDF2	8.8 20.3
TMPTOP	20.3
TMP 60	26.5
TMP_B	27.4
TURVAL	30
WALA	3332.45

Name Max

WEIGHT1 36.875 WSHED 291592.56

7.2 Data Record Example

7.2.1 Column Names for Example Records
ACC011 ACC011F AIRTMP AIRTMPF ALEX11 ALEX11F ALKA11 ALKA11F ALKANEW ALK_CLSS
ALTIM ALTL11 ALTL11F ANCAT ANDEF ANSUM ANSUMF BAT_ID BEDROCK BNSTAR CA11 CA11F
CA16 CATSUM CATSUMF CL11 CL11F CL16 C0316 C0316F COLVAL COLVALF CONCAL CONCALF
COND11 COND11F CONTOP CONTOPF CON_60 CON_B COUNTY CRW_ID DATSMP DICE11 DICE11F
DICI11 DICI11F DICVAL DICVALF DISM DOC11 DOC11F DP_60 DP_B DP_TOP ELEV FACE FE11
FE11F FOREST FTL11 FTL11F FTL16 GMU H16 H16F HC0316 HC0316F HELGR HYDROTYP
IN_OUT K11 K11F K16 LABNAM LAKENAME LAKE_ID LAKE_SIZ LAKE_VOL LAT LATINS LAT_DD
LNGINS LONG_DD MAP_BIG MAP_MED MAP_SML MG11 MG11F MG16 MN11 MN11F NA11 NA11F
NA16 NEWSR NH411 NH411F NH416 NO311 NO311F NO316 NUM_IO ORGION ORGIONF PHAC11
PHAC11F PHAL11 PHAL11F PHEQ11 PHEQ11F PHSTVL PHSTVLF PH_60 PH_60F PH_B PH_BF
PH_TOP PH_TOPF PRECIP PTL11 PTL11F REGION REG_SPC RT RUNIN SAMCOD SAM_ID SAM_ID
SECDIS SECMEAN SECREA SI0211 SI0211F SITDPM S0411 S0411F S0416 SOBC SOBCF ST
STA_ID STRAT STRATA SUBREG SUB_RGN TIMSMP TMPDF1 TMPDF2 TMPTOP TMP_60 TMP_B
TURVAL TURVALF USFS WALA WEIGHT1 WILDNA WSHED WS_DIS WS_OTH

7.2.2 Example Data Records
55.8, " ",15, " ",2.2, " ",317.5, " ",318.1, "1",8250,43.9, " ",1.2606,69.81,267.82,
"D3W0", "1512", "3",1885,2.373, " ",118.413,337.63, "D3",0.142, " ",4.006,0.312, "D3",
35, " ",31.31709465, "D3W0",33.8, " ",20, " ",..., "06003", "5754",030CT85,3.57, " ",
3.8, " ",3.377, " ",.6.54, " ",..,1.5,2702.0433059, "E",401, " ", "T0IYABE NF",0.0357,
" ",1.879, "SIERRA",0.09, "D3",259.846, "D3", "H", "DRAINAGE", "NI/0",1.315, " ",33.625,
"EMSI", "NOBLE LAKE", "4A1-001",1.7,0.021, "38-31'40'N", "0383182",38.527770996,
"1194657", "119-46'35'W",119.77636719, "WALKER LAKE", "SMITH VALLEY", "7.5'
EBBETTS PASS",1.41, " ",115.987,21, " ",1.584, " ",68.904, " ",0.011, " ",0.61,0.051,
" ",0.823, "0/1",64.032321106, "D3",7.03, "D3",7.06, "D3",7.51, " ",8.51, " ",.., " ",.,
" ",8.7, " ",1.016,72.3, " ",4", "/REG",0.3476319191,20, "RH", "06", " ",1.2,1.1,1,
9.218, " ",2.7,0.046, "W0",0.958,336.92785, " ","CA", "15", "MIXED", "4A1", "4A", "A",
13:28,,,,9.9,,,,2.5, " ",4",6.09,31.978, "ZZZ NOT IN USFS WILDERNESS ZZZ",10.36,
" "," "

27, "B0V0", 0, " ", 1.5, "V0", 164.2, "B0V0", 167.7, "1", ., 16.55, "V0", 1.1083, 16.43, 151.77, "D2V0", "1522", "3", 1885, 2.572, "V0", 128.343, 168.21, "D2V0Z0", 0.05, "V0", 1.411, 0.268, "D2V0", 0, "V0", 16.81633444, "D2V0Z0", 17.1, "V0", ., " ", ., ., "06109", "0004", 160CT85, 1.979, "V0", 1.9455, "B0V0", 1.8885, "V0", ., 0.635, "B5V0", ., 13.7, 1.5, 2964.3183898, "W", 16, "V0", "STANISLAUS NF", 0.0076, "V0", 0.4, "SIERRA", 0.06, "D2V0", 142.161, "D2V0", "G", "DRAINAGE", "NI/0", 0.068, "V0", 1.739, "EMSI", "L0ST LAKE", "4A1-003", 4.1, 0.289, "38-13'49'N", " ", 38.230255127, " ", "119-38'51'W", 119.64746094, "WALKER LAKE", "BRIDGEPORT", "15' TOWER PEAK", 0.215, "V0", 17.686, 0, "B5V0Z0", 0.4685, "V0", 20.38, " ", 0, "V0Z0", 0, 0.0025, "V0", 0.04, "0/1", 6.2505524634, "B5D2V0", 7.225, "D2V0", 7.24, "D2V0", 7.35, "D2V0", 7.4, "V0", ., " ", ., " ", 6.2, "W0", 1.016, 7.5, "V0", "4", "/REG", 0.3052456281, 40, "RG", "05", " ", 4.3, 4.15, 4, 0.313, "V0", 15.2, 0.36, "V0", 7.495, 168.14721, "V0", "CA", "15", "MIXED", "4A1", "4A", "A", 7:30, 0, ., 5, ., 5, 0.8, "V0", "5", 22.74, 31.978, "EMIGRANT WILDERNESS", 93.24, " ", " "

34.5, "B0", 8, " ", 4.5, " ", 16.4, " ", 16.2, "1", ., 32.4, " ", 1.1793, 4.34, 24.2, "B2D2", "1518", "3", 1885, 0.181, " ", 9.032, 28.53, "D2", 0.124, "D2N0", 3.498, 0.002, " ", 0, " ", 3.38225872, "B2D2", 3.8, " ", ., " ", ., ., "06109", "0006", 110CT85, 0.451, " ", 0.402, " ", 0.364, " ", ., 1.49, "D2N0", ., 2, 1.5, 2695, 9438853, "W", 18, " ", "STANISLAUS NF", 0.0076, " ", 0.4, "SIERRA", 0.81, " ", 11.58, " ", "G", "DRAINAGE", "NI/0", 0.126, " ", 3.222, "EMSI", "LEOPOLD LAKE", "4A1-004", 4.1, 0.067, "38-10'39'N", " ", 38.177490234, " ", "119-48'16'W", 119.80444336, "WALKER LAKE", "BRIDGEPORT", "15' PINECREST", 0.047, " ", 3.866, 4, " ", 0.217, "D2", 9.44, " ", 0.039, " ", 2.162, 0.095, "B2D2N0", 1.532, "0/1", 13.79282251, "D2", 6.09, " ", 6.12, " ", 6.42, " ", 6.25, " ", ., " ", ., " ", 5.5, "W0", 1.2192,

- 7.2.2 Example Data Records, continued 2.2," ","4","/REG",0.3120734908,20,"RG","12"," ",3.5,3.5,.,1.098," ",3.5,0.345, ",7.183,25.55944,"D2","CA","15","MIXED","4A1","4A","A",11:30,0.2,.,7,.,6.8, 0.2," ","5",8.84,31.978,"EMIGRANT WILDERNESS",36.26," "," "
- 8. GEOGRAPHIC AND SPATIAL INFORMATION
- 8.1 Minimum Longitude -123 Degrees 47 Minutes 05 Seconds (-123.78466797 Decimal Degrees)
- 8.2 Maximum Longitude -105 Degrees 03 Minutes 45 Seconds (-105.06243896 Decimal Degrees)
- 8.3 Minimum Latitude 36 Degrees 05 Minutes 32 Seconds (36.092193604 Decimal Degrees)
- 8.4 Maximum Latitude 48 Degrees 59 Minutes 15 Seconds (48.98748779 Decimal Degrees)
- 8.5 Name of Area or Region
 Pacific Northwest (Washington and Oregon), California (California and Nevada), Northern Rockies (Montana, Idaho, Washington and Oregon), Central Rockies (Utah, Wyoming, Montana, and Idaho), Southern Rockies (Wyoming, Colorado, and New Mexico).
- 9. QUALITY CONTROL / QUALITY ASSURANCE
- 9.1 Data Quality Objectives
- 9.2 Quality Assurance Procedures See Landers et al. (1987).
- 9.3 Unassessed Errors NA
- 10. DATA ACCESS
- 10.1 Data Access Procedures
- 10.2 Data Access Restrictions
- 10.3 Data Access Contact Persons
- 10.4 Data Set Format
- 10.5 Information Concerning Anonymous FTP
- 10.6 Information Concerning WWW
- 10.7 EMAP CD-ROM Containing the Data
- 11. REFERENCES

Landers, D.H., J.M. Eilers, D.F. Brakke, W.S. Overton, P.E. Kellar, M.E. Silverstein, R.D. Schonbrod, R.E. Crowe, R.A. Linthurst, J.M. Omernik, S.A. Teague, and E.P. Meier. 1987. Characteristics of Lakes in the Western United States. Volume I. Population Description and Physico-Chemical Relationships. EPA/600/3-86/054a, U.S. Environmental Protection Agency, Washington, D.C. 176 pp.

Eilers, J.M. Kanciruk, R.A., R.A. McCord, W.S. Overton, L. Hook, D.J. Blick, D.R. Brakke, P.E. Kellar, M.S. DeHaan, M.E. Silverstein, and D.H. Landers. 1987. Characteristics of Lakes in the Western United States. Volume II. Data Compendium for Selected Physical and Chemical Variables. EPA/600/3-86/054b, U.S. Environmental Protection Agency, Washington, D.C. 425 pp.

Eilers, J.M., D.F. Brakke, D.H. Landers, and P.E. Kellar. 1987. Characteristics of lakes in the mountainous areas of the western United States. Verh. Int. Verein. Limnol 23:141-151.

Kanciruk, P., M. Gentry, R. McCord, L. Hook, J. Eilers and M.D. Best. 1987. National Surface Water Survey: Western Lake Survey-Phase I, Data Base Dictionary. ORNL-TM-10307. Oak Ridge National Laboratory, Oak Ridge, TN. 90 pp.

12. TABLE OF ACRONYMS

13. PERSONNEL INFORMATION
Project Manager
John Stoddard
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4441
541-754-4716 (FAX)
stoddard.john@epa.gov

Quality Assurance Officer
Dave Peck
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4426
541-754-4716 (FAX)
peck.david@epa.gov

Information Management, EMAP-Surface Waters Marlys Cappaert
0AO c/o U.S. Environmental Protection Agency NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4467
541-754-4716 (FAX)
cappaert@mail.cor.epa.gov